226 research outputs found

    A robust and physical BSIM3 non-quasi-static transient and AC small-signal model for circuit simulation

    Full text link

    Investigation of bio-aerosol dispersion in a tunnel-ventilated poultry house

    Get PDF
    Bio-aerosol concentrations in poultry houses must be controlled to provide adequate air quality for both birds and workers. High concentrations of airborne bio-aerosols would affect the environmental sustainability of the production and create environmental hazards to the surroundings via the ventilation systems. Previous studies demonstrate that several factors including the age of the birds, the housing configuration, the humidity and temperature would strongly affect the indoor concentration of bio-aerosols. However, limited studies are performed in the literature to investigate the bio-aerosol dispersion pattern inside poultry buildings. In order to fill a gap of the understanding of the bio-aerosol dispersion behavior, experimental measurements of the indoor bio-aerosol distribution are performed in a tunnel-ventilated poultry house in this paper. Meanwhile a three-dimensional computational fluid dynamics (CFD) model is built and validated to further investigate the effect of flow pattern, turbulence and vortex on the dispersion and deposition of the bio-aerosols. Furthermore, bio-aerosols with various diameters are also examined in the CFD model. It is found that higher concentrations of bio-aerosols are detected at the rear part of the house and strong turbulent flow resulting from the ventilation inlets enhances the diffusion and dispersion of bio-aerosols. Local vortex or disturbed flow is responsible for higher local concentration due to the re-suspension of settled bio-aerosols, which suggests that careful attentions should be paid to these locations during cleaning and disinfection. Results from present study contribute to the optimization of design and operation of the poultry houses from the standing point of reducing airborne bio-aerosol concentrations

    Gravity Data Reveal New Evidence of an Axial Magma Chamber Beneath Segment 27 in the Southwest Indian Ridge

    Get PDF
    Hydrothermal systems are integral to mid-ocean ridge activity; they form massive seafloor sulfide (SMS) deposits rich in various metallic elements, which are potential mineral resources. Since 2007, many hydrothermal fields have been discovered along the ultraslow-spreading Southwest Indian Ridge (SWIR). The Duanqiao hydrothermal field is located at segment 27’s axis between the Indomed and Gallieni transform faults; tomography models reveal an obvious low-velocity anomaly beneath it, indicating a possible axial magma chamber (AMC). However, confirmation of an AMC’s existence requires further study and evidence. In this study, we first calculated the gravity effect to identify the heterogeneous distribution of crustal density beneath segment 27 and the surrounding area. Next, we used the gravity-inversion method to obtain the crustal density structure beneath the study area. The results indicate that a thickened crust and low-density crustal materials exist beneath segment 27. The low-density anomaly in the lower crust beneath the Duanqiao hydrothermal field suggests the existence of an AMC covered with a cold and dense upper crust. The density results identify several faults, which provide potential channels for magma migration. In addition, the melt migrates westward and redistributes laterally toward the segment’s western end. However, when migrating toward the segment’s eastern end, the melt is affected by a rapid cooling mechanism. Therefore, the segment’s ends present different density features and morphologies of nontransform discontinuities (NTDs

    Single Crystal Functional Oxides on Silicon

    Get PDF
    Single crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism etc. that have the potential for completely new electronic applications (1-2). Direct synthesis of such oxides on Si remains challenging due to the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces (3-16). Here we report integration of thin (down to 1 unit cell) single crystalline, complex oxide films onto Si substrates, by epitaxial transfer at room temperature. In a field effect transistor using a transferred Pb0.2Zr0.8TiO3 (PZT) layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single crystal functional oxides on-demand on silicon
    • …
    corecore